Incorporating Scientific Advances into Myelofibrosis Treatment Plans

A SHARED DECISION-MAKING SUPPORT TOOL

What Is Shared Decision-Making?

Shared decision-making (SDM) occurs when a healthcare provider and a patient work together to make a healthcare decision that is best for the patient. Optimal decision making takes into account evidence-based information about available options; the provider's knowledge and experience; and the patient's values, goals, and preferences. Patients and their families/caregivers who are engaged in an SDM process are more likely to arrive at a treatment decision that works best for all those involved.

The AXIS 6 Ease ("Es") to SDM

ENSURE

Ensure you see and treat the patient as an individual not a disease.

ESTABLISH

Establish co-created treatment plans that align medical evidence with patient preferences to foster adherence and optimize outcomes.

ELEVATE

Elevate the patient-centric experience and improve satisfaction with care.

ELICIT

Elicit patient/caregiver preferences, values, and goals for therapy.

ENABLE

Enable a long-term personal connection with your patients.

EVALUATE

Evaluate the risk/benefits and costs of treatment so that they are aligned with patient expectations.

Myelofibrosis Symptom Tracking

Myeloproliferative neoplasms (MPNs) commonly cause an array of symptoms that can often be severe and negatively impact quality of life. Measuring and tracking MPN symptoms is important for assessing prognosis, developing treatment plans, and identifying medication dosing. Several symptom assessment tools are available and include:

- MPN-10
 MFSAF v2.0
- MFSAF revised
 MFSAF v4.0

Risk Stratification of Myelofibrosis

Risk stratification of myelofibrosis is important for determining which types of treatment are best for each patient's disease. Several scoring models are available that consider age, hemoglobin levels, white blood cell counts, circulating blast cells, and constitutional symptoms. Different prognostic models will also consider other disease features, like platelet counts, red blood cell transfusion dependence, and the presence of mutations. Commonly used prognostic risk models are:

MIPSS-70
 MIPSS-70+ Version 2.0
 OIPSS
 OIPSS-Plus
 MYSEC-PM

The JAK-STAT Pathway in Myelofibrosis

· JAK-STAT pathway plays a central role in cell proliferation, differentiation, and survival

JAK2 V617F mutation is present in about 50% of patients with primary myelofibrosis

Key Efficacy Data of JAK Inhibitors

	RUXOLITINIB	FEDRATINIB		PACRITINIB	MOMELOTINIB
Trial	COMFORT-1	JAKARTA	JAKARTA2	PERSIST-2	MOMENTUM
Patient population	Int-2 or high-risk MF PMF, PPV-MF, or PET-MF PLT count ≥100,000 Palpable spleen ≥5 cm PB <10% ECOG PS ≤3 Refractory, intolerant to, or not candidates for available therapy n = 155	Intermediate or high-risk MF PLT count ≥50 × 10%L ECOG PS scores ≤2 n = 96	Ruxolitinib R/R or intolerant n = 79	$\begin{array}{l} Myelofibrosis\\ with platelet\\ count \leq 100 x\\ 10^{9}/L\\ Neutrophil > 0.5\\ Palpable spleen\\ \geq 5 cm\\ TSS \geq 13\\ PB < 10\%\\ ECOG PS \leq 3\\ n = 149 \end{array}$	Previously treated with JAKi TSS \geq 10 Hgb <10 g/dL PLT count \geq 25 x 10 ⁹ n = 130
Key Outcomes	≥35% SVR = 41.9% ≥50% TSS reduction = 45.9%	≥35% SVR = 47% ≥50% TSS reduction = 40%	≥35% SVR = 30% ≥50% TSS reduction = 27%	≥35% SVR = 18% ≥50% TSS reduction = 25% Clinical improvements in hemoglobin = 25%	≥35% SVR = 23.1% TSS response rate = 24.6% TI response rate = 30.8%
Notes	Approximately 50% of patients lose response to ruxolitinib by 3 years. Presence of <i>RAS/CBL</i> mutations are predictive of treatment resistance.	Boxed warning for encephalopathy including Wernicke's. Thiamine monitoring is recommended. GI mitigation strategy includes prophylactic antiemetics and treatment with antidiarrhea mediations.		Conversion to TI can occur after several months on treatment.	Not yet approved.

JAK Inhibitors

	RUXOLITINIB	FEDRATINIB	PACRITINIB	MOMELOTINIB
Approved for treatment of:	Myelofibrosis – 1st line Polycythemia vera – 2nd line	Myelofibrosis – 1st line and 2nd line	Myelofibrosis with platelet count <50 x 10 ⁹ /L and/or cytopenia 1st line and 2nd line	Seeking approval
Mechanism of action	Inhibits JAK1 and JAK2	JAK2-selective inhibitor	Inhibits JAK2, ACVR1, and IRAK1	Inhibits JAK1, JAK2, and ACVR1
Administration route	Oral	Oral	Oral	Oral
Dosing	Myelofibrosis – depends on baseline platelet count: 200 x 10%L: 20 mg twice daily 100 to 200 x 10%L: 15 mg twice daily 50 to <100 x 10%L: 5 mg twice daily Polycythemia vera: 10 mg twice daily	400 mg once daily	200 mg twice daily	MOMENTUM trial dosing: 200 mg once daily
Common side effects	 Thrombocytopenia Anemia Bruising Dizziness Headache Diarrhea 	Diarrhea Nausea Anemia Vomiting	Diarrhea Thrombocytopenia Nausea Anemia Peripheral edema	Diarrhea Blood creatinine increased Pyrexia
Sides effects of special interest	Thrombocytopenia, anemia, neutropenia Infection Non-melanoma skin cancer Lipid elevation Major adverse cardiovascular events Thrombosis Secondary malignancies	Anemia, thrombocytopenia Castrointestinal toxicity Hepatic toxicity Amylase and lipase elevation Major adverse cardiovascular events Thrombosis Secondary malignancies Decreased thiamine levels leading to Wernicke's encephalopathy	Hemorrhage Diarrhea Thrombocytopenia Trombocytopenia Prolonged QT interval Major adverse cardiovascular events Thrombosis Secondary malignancies Infection	Thrombocytopenia, anemia, neutropenia Hemorrhage Major adverse cardiovascular events Asthenia Fatigue
Drug interactions	Fluconazole CYP3A4 inhibitors	CYP3A4 inhibitors CYP3A4 inducers CVP3A4, CYP2C19, CYP2D6 substrates OCT2 and MATE1/2-K substrates	CYP3A4 inhibitors CYP3A4 inducers P-gp, BCRP, or OCT1 substrate concentrations can be impacted by coadministration	Not known at this time

Abbreviations

ACVR1: activin A receptor type 1

DIPSS: Dynamic International Prognostic Score System

ECOG: Eastern Cooperative Oncology Group

IRAK: interleukin receptor-associated kinase

JAK: Janus-associated kinase

MF: myelofibrosis

MFSAF: myelofibrosis symptom assessment form MIPSS: Mutation-Enhanced International Prognostic Score System MPN: myeloproliferative neoplasm MYSEC-PM: MYelofibrosis SECondary to PV and ET prognostic model PB: peripheral blast PLT: platelet PMF: post-myelofibrosis PPV-MF: post-polycythemia vera

myelofibrosis

PET-MF: post-essential thrombocythemia myelofibrosis R/R: relapsed/refractory SVR: spleen volume reduction TI: transfusion independence

TSS: total symptom score

References

Coltro G, Rotunno G, Mannelli L, et al. RAS/CBL mutations predict resistance to JAK inhibitors in myelofibrosis and are associated with poor prognostic features. *Blood Adv.* 2020;4(15):3677-3687.

Fedratinib. Package insert. Bristol-Myers Squibb Company; 2023.

Gerds AT, Mesa R, Vannucchi AM, et al. Updated results from the momentum phase 3 study of momelotinib (MMB) versus danazol (DAN) in symptomatic and anemic myelofibrosis (MF) patients previously treated with a JAK inhibitor. Abstract presented at: Annual Meeting of the American Society of Hematology; New Orleans, LA; December 10-13, 2022. Abstract 627.

Harrison CN, Schaap N, Vannucchi AM, et al. Fedratinib induces spleen responses and reduces symptom burden in patients with myeloproliferative neoplasm (MPN)associated myelofibrosis (MF) and low platelet counts, who were ruxolitinib-naïve or previously treated with ruxolitinib. Blood. 2019;134(suppl 1);668.

Harrison CN, Schaap N, Vannucchi AM, et al. Fedratinib in patients with myeloproliferative neoplasm-associated myelofibrosis previously treated with ruxolitinib: a reenalysis of the phase 2 JAKARTA2 study. Abstract present at: European Hematology Association annual meeting; Amsterdam, the Netherlands; June 13-16, 2019. Abstract PS1459.

Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. *N Engl J Med.* 2013;369(25):2379-2390.

Mascarenhas J, Hoffman R, Talpaz M, et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial. *JAMA Oncol.* 2018;4(5):652-659.

Mesa RA, Vannucchi AM, Mead A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. *Lancet Hematol.* 2017;4(5):E225-E236.

Mesa R, Gerds AT, Vannucchi A, et al. MOMENTUM: Phase 3 randomized study of momelotinib (MMB) versus danazol (DAN) in symptomatic and anemic myelofibrosis patients previously treated with a JAK inhibitor. Abstract presented at: Annual Meeting of the American Society of Clinical Oncology; New Orleans, LA; July 22-23, 2022. Abstract 7002.

Oh ST, Mesa R, Harrison CN, et al. Pacritinib is a potent ACVR1 inhibitor with significant anemia benefit in patients with myelofibrosis. Abstract presented at: Annual Meeting of the American Society of Hematology; New Orleans, LA; December 10-13, 2022. Abstract 628.

O'Sullivan JM, Harrison CN. JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms. *Mol Cell Endocrinol.* 2017;451:71-79.

Pacritinib. Package insert. CTI BioPharma Corp.; 2022.

Ruxolitinib. Package insert. Incyte Corporation; 2021.

Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O'Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases [published correction appears in Nat Rev Drug Discov. 2017;17(1):78]. Nat Rev Drug Discov. 2017;16(12):843-862.

Tefferi A. Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management. *Am J Hematol.* 2021;96(1):145-162.

Verstovsek S, Mesa R, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. *N Engl J Med.* 2012;366(9):799-807.

Verstovsek S, Chen CC, Egyed M, et al. MOMENTUM: momelotinib vs danazol in patients with myelofibrosis previously treated with JAKi who are symptomatic and anemic. *Future Oncol.* 2021;17(12):1449-1458.

This resource is supported by educational grants from GlaxoSmithKline, Incyte Corporation, CTI BioParma Corp, and Bristol-Myers Squibb Company.